Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode Skip to content
optimagic
Light Logo Dark Logo
  • Tutorials
    • Numerical optimization
    • Numerical differentiation
    • bayes_opt Optimizer in optimagic
  • How-to Guides
    • How to write objective functions
    • How to specify params
    • How to speed up your optimization using derivatives
    • How to specify and configure algorithms
    • How to select a local optimizer
    • How to specify bounds
    • How to specify constraints
    • How to choose a strategy for global optimization
    • How to do multistart optimizations
    • How to visualize optimizer histories
    • How to scale optimization problems
    • How to use logging
    • How to handle errors during optimization
    • How to visualize an optimization problem
    • How to Benchmark Optimization Algorithms
    • How to add optimizers to optimagic
    • How to document optimizers
  • Explanation
    • How constraints are implemented
    • Internal optimizers for optimagic
    • Why optimization is difficult
    • Introduction to basic types of numerical optimization algorithms
    • How supported optimization algorithms are tested
    • Numerical differentiation: methods
  • optimagic API
    • Utility functions
    • The default algorithm options
    • Batch evaluators
    • Types
  • Development
    • Code of Conduct
    • How to contribute
    • Styleguide
    • Enhancement Proposals
      • EP-00: Governance model & code of conduct
      • EP-01: Pytrees
      • EP-02: Static typing
      • EP-03: Alignment with SciPy
    • Credits
    • Changes
  • Videos
  • Optimizers
  • Estimagic
    • Estimagic Tutorials
      • Likelihood estimation
      • Method of Simulated Moments (MSM)
      • Bootstrap Tutorial
      • How to generate publication quality tables
    • Explanation
      • Bootstrap Confidence Intervals
      • Bootstrap Monte Carlo Comparison
      • Robust Likelihood inference
    • estimagic API
  • Installation
Back to top
View this page
Edit this page

Robust Likelihood inferenceΒΆ

(to be written.)

In case of an urgent request for this guide, feel free to open an issue [here](https://github.com/optimagic-dev/optimagic/issues).

Next
estimagic API
Previous
Bootstrap Monte Carlo Comparison
Copyright © 2019 - 2025, Janos Gabler
Made with Sphinx and @pradyunsg's Furo